Multiple zeta values and Euler sums

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Binomial Sums, Multiple Clausen Values, and Zeta Values

We find and prove relationships between Riemann zeta values and central binomial sums. We also investigate alternating binomial sums (also called Apéry sums). The study of non-alternating sums leads to an investigation of different types of sums which we call multiple Clausen values. The study of alternating sums leads to a tower of experimental results involving polylogarithms in the golden ra...

متن کامل

ALTERNATING EULER SUMS AND SPECIAL VALUES OF WITTEN MULTIPLE ZETA FUNCTION ATTACHED TO so(5)

Abstract. In this note we shall study the Witten multiple zeta function associated to the Lie algebra so(5) defined by Matsumoto. Our main result shows that its special values at nonnegative integers are always expressible by alternating Euler sums. More precisely, every such special value of weight w ≥ 3 is a finite rational linear combination of alternating Euler sums of weight w and depth at...

متن کامل

On Mordell-tornheim Sums and Multiple Zeta Values

RÉSUMÉ. Nous prouvons que toute somme de Mordell-Tornheim avec des arguments entiers positifs peut s’écrire comme une combinaison linéaire rationnelle de valeurs prises par des fonctions multi-zêta ayant le même poids et la même profondeur. Selon un résultat de Tsumura, il s’ensuit que toute somme de Mordell-Tornheim ayant un poids et une profondeur de parité différente peut s’exprimer comme un...

متن کامل

Euler-type Multiple Integrals as Linear Forms in Zeta Values

0. In 1978, Apéry showed the irrationality of ζ(3) = ∑∞ n=1 1 n3 by giving the approximants `n = unζ(3) − vn ∈ Qζ(3) + Q, un, dnvn ∈ Z, dn = l.c.m.(1, 2, . . . , n), with the property |`n| → ( √ 2 − 1) < 1/e as n → ∞. A similar approach was put forward to show the irrationality of ζ(2) (which is π/6, hence transcendental thanks to Lindemann) but I will concentrate on the case of ζ(3). A few mon...

متن کامل

Algorithms for Some Euler-Type Identities for Multiple Zeta Values

. . . , s k are positive integers with s 1 > 1. For k ≤ n, let E(2n, k) be the sum of all multiple zeta values with even arguments whose weight is 2n and whose depth is k. The well-known result E(2n, 2) = 3ζ(2n)/4was extended to E(2n, 3) and E(2n, 4) by Z. Shen and T. Cai. Applying the theory of symmetric functions, Hoffman gave an explicit generating function for the numbers E(2n, k) and then ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2017

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2017.01.018